[PUBLISHING]

PHP5 CMS Framework Development

Martin Brampton

PHP5 CMS

PACKT

Chapter No. 6
"Access Control"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.6 "Access Control"
A synopsis of the book’s content

Information on where to buy this book

About the Author

Martin Brampton, an internationally known IT Industry Analyst, has an unrivalled
grasp of the complexities of modern day system architectures built on both research and
practical experiences. Martin's knowledge of the importance of scalable frameworks is
founded on the early days of his career. After studying mathematics at Cambridge
University, he built major software systems in both financial and technical application
areas. Several of his systems were acclaimed as "legendary" in their reliability—some of
which are still in use today.

After a decade of heading IT for an accountancy firm, a few years as a director of a
leading analyst firm, and an MA degree in Modern European Philosophy, Martin finally
returned to his interest in software, but this time transformed into web applications. He
found PHPS, which fits well with his prejudice in favor of programming languages that
are interpreted and strongly object oriented.

Utilizing PHP, Martin took on development of useful extensions for the Mambo (and
now also Joomla!) systems, then became a team leader for developing Mambo itself.
More recently, he has written a complete new generation CMS named Aliro, many
aspects of which are described in this book. He has also created a common API to enable
extensions to be written with a single code base for Aliro, Joomla (1.0 and 1.5) and
Mambo (http://www.acmsapi.org).

All in all, Martin is now interested in too many things and consequently has little spare
time. But his focus is on object oriented software with a web slant, much of which is
open-source. He runs Black Sheep Research, which provides software, speaking and
writing services, including "The Brampton Factor", a monthly column for silicon

com (http://silicon.com/comment/martinbrampton) where he is politely described as a
veteran analyst.

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

PHP5 CMS Framework Development

This book guides you through the design and implementation decisions necessary to
create a working architecture for a PHP5-based content management system. Each of the
major areas and decision points are reviewed and discussed. Code examples, which take
advantage of PHPS's object oriented nature, are provided and explained. They serve as a
means of illustrating the detailed development issues created by a CMS. In areas where
the code is too voluminous to be reproduced in detail, the design principles are explained
along with some critical pieces of code. A basic knowledge of PHP is assumed.

All of the code samples are taken from a frozen version of the Aliro development
project, and you can visit a site running on that version at http://packt.aliro.org. Apart
from being a demonstration of the code in action, the site provides access to the whole
of the code both through a class browser, built using Doxygen and a code repository,
powered by Subversion.

What This Book Covers

Chapter 1: This chapter introduces the reasons why CMS frameworks have become such
a widely used platform for websites and defines the critical features. The technical
environment is considered, in particular the benefits of using PHPS for a CMS. Some
general questions about MVC, XHTML generation, and security are reviewed.

Chapter 2: This chapter takes us from a general overview of the CMS framework into the
specifics of user management. Every CMS-based site needs to make distinctions between
different types of user, if only between administrators and visitors. Often the
requirements are much more complex. The framework can provide a sound platform on
which more elaborate mechanisms can be built

Chapter 3: This chapter explores class and code loading strategies to decrease bloat and
increase security. Focus is placed on extensible approaches that can support additions to
the system.

Chapter 4: This chapter addresses and dispels the mystique of session management. Very
often continuity is needed, whether it is to support user login, or to allow the operation of
something like a shopping cart. The standard way to handle this is with sessions, and we
look at ways to provide a robust and secure basis for session handling.

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 5: This chapter provides a basis for effective data handling in the applications
that use our CMS framework. The heart of a CMS is its database, and although PHP can
connect to databases, we look at services that can be built to make access easier.
Likewise, a standard abstract class for data objects corresponding to database rows can
considerably aid the development of the rest of the CMS.

Chapter 6: This chapter shows an outline of a highly flexible role-based access control
system. The culmination of much research and experimentation into access control
mechanisms is the role-based access control system. We look at an implementation
specifically designed for the CMS environment.

Chapter 7: This chapter focusses on defining a uniform architecture to support
functionality that is actually visible to the user. One of the reasons for building a CMS is
to use the same code repeatedly. But it will often be desirable to add another application
to the framework, and for this we need to look at standardized mechanisms for installing
and managing extensions.

Chapter 8: This chapter helps us gain efficiency by building specialized handlers.
A powerful way to make a CMS more efficient is to use a cache. This can be done
in various ways, and we look at the most profitable and at efficient code for their
implementation.

Chapter 9: This chapter shows how the CMS framework can provide all the basic
mechanisms for menu handling. While the styling of the menu, or equivalent navigational
device, is outside the core of a CMS framework, we can look at standard mechanisms for
handling the raw data that drives menus. If this is done well, building attractive displays
will be much easier.

Chapter 10: In more and more cases, software needs to cater for use of different
languages and other local standards. The CMS is no exception, and here we explore a
powerful mechanism for language and locale hand

Chapter 11: How best to create the final XHTML is an area rife with controversy. In this
chapter, we will look at the strengths and weaknesses of approaches such as templating
and widgets, along with the code needed to create them.

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 12: This chapter describes the basic principles of a generalized configuration
system. There are a number of small but important services that are well provided by
a CMS framework. We look at mail, file system management, XML handling, and
several others.

Chapter 13: This chapter reviews the handling of the inevitable errors that go with
software systems. Error handling is an area where a good CMS framework can be very
helpful to applications by trapping and logging errors, making it relatively easy to
present user friendly messages and avoid giving away information that would
compromise security.

Chapter 14: The actual content that is organized by a CMS may be extremely varied. In
this chapter, we look at the most popular areas with a brief review of the implementation
issues for each. Less significant areas are discussed in outline. A simple text handling
application is described in some detail to illustrate the principles involved, and ways in
which it could be made more sophisticated are discussed.

Appendix A: This appendix describes how to create the setup files that are used by
the install

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

Now we have some ideas about database, we quickly run into another requirement.
Many websites will want to control who has access to what. Once embarked on this
route, it turns out there are many situations where access control is appropriate,

and they can easily become very complex. So in this chapter we look at the most
highly regarded model-role-based access control-and find ways to implement it.
The aim is to achieve a flexible and efficient implementation that can be exploited by
increasingly sophisticated software. To show what is going on, the example of a file
repository extension is used.

The Problem

We need to design and implement a role-based access control (RBAC) system,
demonstrate its use, and ensure that the system can provide:

e asimple data structure
e aflexible code to provide a usable RBAC interface

o efficiency so that RBAC avoids heavy overheads

Discussion and Considerations

Computer systems have long needed controls on access. Early software commonly
fell into the category that became known as access control lists (ACL). But these
were typically applied at a fairly low level in systems, and referred to basic computer
operations. Further development brought software designed to tackle more

general issues, such as control of confidential documents. Much work was done on
discretionary access control (DAC), and mandatory access control (MAC).

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

A good deal of academic research has been devoted to the whole question of access
controls. The culmination of this work is that the model most widely favored is the
role-based access control system, such a mouthful that the acronym RBAC is used
hereafter. Now although the academic analysis can be abstruse, we need a practical
solution to the problem of managing access to services on a website. Fortunately,
rather like the relational database discussed in the last chapter, the concepts of RBAC
are simple enough.

RBAC involves some basic entities. Unfortunately, terminologies are not always
consistent, so let us keep close to the mainstream, and define some that will be used
to implement our solution:

Subject: A subject is something that is controlled. It could be a whole web
page, but might well be something much more specific such as a folder in a
file repository system. This example points to the fact that a subject can often
be split into two elements, a type, and an identifier. So the folders of a file
repository count as a type of subject, and each individual folder has some
kind of identifier.

Action: An action arises because we typically need to do more than simply
allow or deny access to RBAC subjects. In our example, we may place
different restrictions on uploading files to a folder and downloading

files from the folder. So our actions might therefore include 'upload', and
'download'.

Accessor: The simplest example of an accessor is a user. The accessor

is someone or something who wants to perform an action. It is unduly
restrictive to assume that accessors are always users. We might want to
consider other computer systems as accessors, or an accessor might be a
particular piece of software. Accessors are like subjects in splitting into two
parts. The first part is the kind of accessor, with website users being the most
common kind. The second part is an identifier for the specific accessor, which
might be a user identifying number.

Permission: The combination of a subject and an action is a permission. So,
for example, being able to download files from a particular folder in a file
repository would be a permission.

Assignment: In RBAC there is never a direct link between an accessor and
permission to perform an action on a subject. Instead, accessors are allocated
one or more roles. The linking of an accessor and role is an assignment.

Role: A role is the bearer of permissions and is similar to the notion of a
group. It is roles that are granted one or more permissions.

[120]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

It is easy to see that we can control what can be done by allocating roles to users, and
then checking to see if any of a user's roles has a particular permission. Moreover,
we can generalize this beyond users to other types of accessor as the need arises. The
model built so far is known in the academic literature as RBACj.

Adding Hierarchy

As RBAC can operate at a much more general level than ACL, it will often happen
that one role embraces another. Suppose we think of the example of a hospital, the
role of consultant might include the role of doctor. Not everyone who has the role of
doctor would have the role of consultant. But all consultants are doctors.

At present, Aliro implements hierarchy purely for backwards compatibility with
the Mambo, and Joomla! schemes, where there is a strict hierarchy of roles for
ACL. The ability to extend hierarchy more generally is feasible, given the Aliro
implementation, and may be added at some point.

The model with the addition of role hierarchies is known as RBAC;.

Adding Constraints

In general data processing, situations arise where RBAC is expected to implement
constraints on the allocation of roles. A typical example would be that the same
person is not permitted to have both purchasing and account manager roles.
Restrictions of this kind derive from fairly obvious principles to limit scope for fraud.

While constraints can be powerful additions to RBAC, they do not often arise in web
applications, so Aliro does not presently provide any capability for constraints. The
option is not precluded, since constraints are typically grafted on top of an RBAC
system that does not have them.

Adding constraints to the basic RBACy model creates an RBAC, model, and if both
hierarchy and constraints are provided, the model is called RBACs.

Avoiding Unnecessary Restrictions

When it comes to design an implementation, it would be a pity to create obstacles
that will be troublesome later. To achieve maximum flexibility, few restrictions are
placed on the information that is stored by the RBAC system.

[121]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

Subjects and accessors have both types, and identifiers. The types can be strings, and
there is no need for the RBAC system to limit what can be used in this respect. A
moderate limitation on length is not unduly restrictive. It is up to the wider CMS to
decide, for example, what kinds of subjects are needed. Our example for this chapter

is the file repository, and the subjects it needs are known to the designer of the
repository. All requests to the RBAC system from the file repository will take account
of this knowledge.

Identifiers will often be simple numbers, probably derived from an auto-increment
primary key in the database. But it would be unduly restrictive to insist that
identifiers must be numbers. It may be that control is needed over subjects that
cannot be identified by a number. Maybe the subject can only be identified by a non-
numeric key such as a URI, or maybe it needs more than one field to pick it out.

For these reasons, it is better to implement the RBAC system with the identifiers as
strings, possibly with quite generous length constraints. That way, the designers
of software that makes use of the RBAC system have the maximum opportunity to
construct identifiers that work in a particular context. Any number of schemes can
be imagined that will combine multiple fields into a string; after all, the only thing
we will do with the identifier in the RBAC system is to test for equality. Provided
identifiers are unique, their precise structure does not matter. The only point to
watch is making sure that whatever the original identifier may be, it is consistently
converted into a string.

Actions can be simple strings, since they are merely arbitrary labels. Again, their
meaning is important only within the area that is applying RBAC, so the actual
RBAC system does not need to impose any restrictions. Length need not be
especially large.

Roles are similar, although systems sometimes include a table of roles because extra
information is held, such as a description of the role. But since this is not really a
requirement of RBAC, the system built here will not demand descriptions for roles,
and will permit a role to be any arbitrary string. While descriptions can be useful, it
is easy to provide them as an optional extra. Avoiding making them a requirement
keeps the system as flexible as possible, and makes it much easier to create roles on
the fly, something that will often be needed.

Some Special Roles

Handling access controls can be made easier and more efficient by inventing some
roles that have their own special properties. Aliro uses three of these: visitor,
registered, and nobody.

[122]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

Everyone who comes to the site is counted as a visitor, and is therefore implicitly
given the role visitor. If a right is granted to this role, it is assumed that it is granted
to everybody. After all, it is illogical to give a right to a visitor, and deny it to a user
who has logged in, since the user could gain the access right just by logging out.

For the sake of efficient implementation of the visitor role, two things are done. One
is that nothing is stored to associate particular users with the role, since everyone
has it automatically. Second, since most sites offer quite a lot of access to visitors
prior to login, the visitor role is given access to anything that has not been connected
with some more specific role. This means, again, that nothing needs to be stored in
relation to the visitor role.

Almost as extensive is the role registered, which is automatically applied to anyone
who has logged in, but excludes visitors who have not logged in. Again, nothing

is stored to associate users with the role, since it applies to anyone who identifies
themselves as a registered user. But in this case, rights can be granted to the
registered role. Rather like the visitor role, logic dictates that if access is granted to all
registered users, any more specific rights are redundant, and can be ignored.

Finally, the role of "nobody" is useful because of the principle that where no specific
access has been granted, a resource is available to everyone. Where all access is to
be blocked, then access can be granted to "nobody" and no user is permitted to be
"nobody". In fact, we can now see that no user can be allocated to any of the special
roles since they are always linked to them automatically or not at all.

Implementation Efficiency

Clearly an RBAC system may have to handle a lot of data. More significantly, it may
need to deal with a lot of requests in a short time. A page of output will often consist
of multiple elements, any or all of which may involve decisions on access.

A two pronged approach can be taken to this problem, using two different kinds

of cache. Some RBAC data is general in nature, an obvious example being the role
hierarchy. This applies equally to everyone, and is a relatively small amount of data.
Information of this kind can be cached in the file system so as to be available to
every request.

[123]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

Much RBAC information is linked to the particular user. If all such data were to be
stored in the standard cache, it is likely that the cache would grow very large, with
much of the data irrelevant to any particular request. A better approach is to store
RBAC data that is specific to the user as session data. That way, it will be available
for every request by the same user, but will not be cluttered up with data for other
users. Since Aliro ensures that there is a live session for every user, including visitors
who have not yet logged in, and also preserves the session data at login, this is a
feasible approach.

Where are the Real Difficulties?

Maybe you think we already have enough problems to solve without looking for
others? The sad fact is that we have not yet even considered the most difficult one!
In my experience, the real difficulties arise in trying to design a user interface to deal
with actual control requirements.

The example used in this chapter is relatively simple. Controlling what users can do
in a file repository extension does not immediately introduce much complexity. But
this apparently simple situation is easily made more complex by the kind of requests
that are often made for a more advanced repository.

In the simple case, all we have to worry about is that we have control over areas of
the repository, indicating who can upload, who can download, and who can edit the
files. Those are the requirements that are covered by the examples below.

Going beyond that, though, consider a situation that is often discussed as a possible
requirement. The repository is extended so that some users have their own area,
and can do what they like within it. A simple consequence of this is that we need

to be able to grant those users the ability to create new folders in the file repository,
as well as to upload and edit files in the existing folders. So far so good! But this
scenario also introduces the idea that we may want the user who owns an area of
the repository to be able to have control over certain areas, which other users may
have access to. Now we need the additional ability to control which users have the
right to give access to certain parts of the repository. If we want to go even further,
we can raise the issue of whether a user in this position would be able to delegate the
granting of access in their area to other users, so as to achieve a complete hierarchy
of control.

Handling the technical requirements here is not too difficult. What is difficult

is designing user interfaces to deal with all the possibilities without creating an
explosion of complexity. For an individual case it is feasible to find a solution. An
attempt to create a general solution would probably result in a problem that would
be extremely hard to solve.

[124]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

Framework Solution

The implementation of access control falls into three classes. One is the class that is
asked questions about who can do what. Closely associated with this is another class
that caches general information applicable to all users. It is made a separate class

to aid implementation of the split of cache between generalD and user specific. The
third class handles administration operations. Before looking at the classes, though,
let's figure out the database design.

Database for RBAC

All that is required to implement basic RBAC is two tables. A third table is required
to extend to a hierarchical model. An optional extra table can be implemented to
hold role descriptions. Thinking back to the design considerations, the first need

is for a way to record the operations that can be done on the subjects, that is the
permissions. They are the targets for our access control system. You'll recall that a
permission consists of an action and a subject, where a subject is defined by a type,
and an identifier. For ease of handling, a simple auto-increment ID number is added.
But we also need a couple of other things.

To make our RBAC system general, it is important to be able to control not only the
actual permissions, but also who can grant those permissions, and whether they can
grant that right to others. So an extra control field is added with one bit for each of
those three possibilities. It therefore becomes possible to grant the right to access
something with or without the ability to pass on that right.

The other extra data item that is useful is a "system" flag. It is used to make some
permissions incapable of deletion. Although not being a logical requirement, this

is certainly a practical requirement. We want to give administrators a lot of power
over the configuration of access rights, but at the same time, we want to avoid any
catastrophes. The sort of thing that would be highly undesirable would be for the top
level administrator to remove all of their own rights to the system. In practice, most
systems will have a critical central structure of rights, which should not be altered
even by the highest administrator.

So now the permissions table can be seen to be as shown in the following screenshot:

Field Type
o id int(11)
[~ role varchar(60)
[T control tinyint(3)
[~ action varchar(60)
[T subject_type varchar(60)
[~ subject_id text
[T system smallint(5)

[125]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

Note that the character strings for role, action, and subject_type are given generous
lengths of 60, which should be more than adequate. The subject ID will often be quite
short, but to avoid constraining generality, it is made a text field, so that the RBAC
system can still handle very complex identifiers, if required. Of course, there will be
some performance penalties if this field is very long, but it is better to have a design
trade-off than a limitation. If we restricted the subject ID to being a number, then
more complex identifiers would be a special case. This would destroy the generality
of our scheme, and might ultimately reduce overall efficiency. In addition to the
auto-increment primary key ID, two indices are created, as shown in the following
screenshot. They involve overhead during update operations but are likely to speed
access operations. Since far more accesses will typically be made than updates, this
makes sense. If for some reason an index does not give a benefit, it is always possible
to drop it. Note that the index on the subject ID has to be constrained in length

to avoid breaking limits on key size. The value chosen is a compromise between
efficiency through short keys, and efficiency through the use of fine grained keys. In
a heavily used system, it would be worth reviewing the chosen figure carefully, and
perhaps modifying it in the light of studies into actual data.

Indexes:
Keyname Type Cardinality Action Field
PRIMARY PRIMARY 2 2 X i
role_type INDEX 2 & ¥ role
action
subject_type
subject id 60
subaction INDEX 2 ¥ ¥ subject type
action
subject id 60

The other main database table is even simpler, and holds information about
assignment of accessors to roles. Again, an auto-increment ID is added for
convenience. Apart from the ID, the only fields required are the role, the accessor
type, and the accessor ID. This time a single index, additional to the primary key, is
sufficient. The assignment table is shown in the following screenshot, and its index is
shown in the screenshot after that:

Field Type
rid int(11)
[~ access_type varchar(60)
[T access_id text
[~ role varchar(60)
[126]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

Indexes:

Keyname Type Cardinality Action Field
PRIMARY PRIMARY 0 ¥ X id
access_type INDEX None # ¥ access type

access_id 60
role

Adding hierarchy to RBAC requires only a very simple table, where each row
contains two fields: a role, and an implied role. Both fields constitute the primary
key, neither field on its own being necessarily unique. An index is not required

for efficiency, since the volume of hierarchy information is assumed to be small,

and whenever it is needed, the whole table is read. But it is still a good principle to
have a primary key, and it also guarantees that there will not be redundant entries.
For the example given earlier, a typical entry might have consultant as the role,

and doctor as the implied role. At present, Aliro implements hierarchy only for
backwards compatibility, but it is a relatively easy development to make hierarchical
relationships generally available.

Optionally, an extra table can be used to hold a description of the roles in use. This
has no functional purpose, and is simply an option to aid administrators of the
system. The table should have the role as its primary key. As it does not affect the
functionality of the RBAC at all, no further detail is given here.

With the database design settled, let's look at the classes. The simplest is the
administration class, so we'll start there.

Administering RBAC

The administration of the system could be done by writing directly to the database,
since that is what most of the operations involve. There are strong reasons not to do
so. Although the operations are simple, it is vital that they be handled correctly. It is
generally a poor principle to allow access to the mechanisms of a system rather than
providing an interface through class methods. The latter approach ideally allows the
creation of a robust interface that changes relatively infrequently, while details of
implementation can be modified without affecting the rest of the system.

The administration class is kept separate from the classes handling questions about
access because for most CMS requests, administration will not be needed, and the
administration class will not load at all. As a central service, the class is implemented
as a standard singleton, but it is not cached because information generally needs to
be written immediately to the database. In fact, the administration class frequently
requests the authorization cache class to clear its cache so that the changes in the
database can be effective immediately. The class starts off:

[127]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

class aliroAuthorisationAdmin

private static $instance = CLASS ;

private $handler = null;

private $authoriser = null;

private $database = null;

private function _ construct()
Sthis-s>handler =& aliroAuthoriserCache: :getInstance() ;
Sthis-s>authoriser =& aliroAuthoriser::getInstance() ;
Sthis->database = aliroCoreDatabase: :getInstance() ;

}

private function _ clone()

{
}

public static function getInstance ()

{

// Enforce singleton

return is object (self::$instance) ? self::$instance
(self::$instance = new self::$instance());

}

private function doSQL(sgl, SSclear=false)

{

Sthis->database->doSQL($sql) ;
if (Sclear) S$this->clearCache() ;

}

private function clearCache ()

{
}

Apart from the instance property that is used to implement the singleton pattern,

the other private properties are related objects that are acquired in the constructor

to help other methods. Getting an instance operates in the usual fashion for a
singleton, with the private constructor, and clone methods enforcing access solely via
getInstance.

Sthis->handler->clearCache() ;

The dosQL method also simplifies other methods by combining a call to the database
with an optional clearing of cache through the class's clearcache method. Clearly
the latter is simple enough that it could be eliminated. But it is better to have the
method in place so that if changes were made to the implementation such that
different actions were needed when any relevant cache is to be cleared, the changes
would be isolated to the clearcache method. Next we have a couple of useful
methods that simply refer to one of the other RBAC classes:

public function getAllRoles ($addSpecial=false)

{

return $this->authoriser->getAllRoles ($addSpecial) ;

[128]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

}

public function getTranslatedRole ($Srole)

{
}

return $this->authoriser->getTranslatedRole (Srole) ;

Again, these are provided so as to simplify the future evolution of the code so that
implementation details are concentrated in easily identified locations. The general
idea of getAllRoles is obvious from the name, and the parameter determines
whether the special roles such as visitor, registered, and nobody will be included.
Since those roles are built into the system in English, it would be useful to be able

to get local translations for them. So the method getTranslatedrRole will return a
translation for any of the special roles; for other roles it will return the parameter
unchanged, since roles are created dynamically as text strings, and will therefore
normally be in a local language from the outset. Now we are ready to look at the first
meaty method:

public function permittedRoles ($action, $subject type, $subject id)

{

}

$nonspecific = true;
foreach ($this->permissionHolders ($subject type, S$subject id)
as Spossible)

if ('*' == Spossible->action OR S$Saction == S$Spossible-s>action)

{

Sresult [$possible->role] = S$Sthis->getTranslatedRole
(Spossible->role) ;
if ('*' != $possible->subject type AND '*' I=
$possible subject id) s$nonspecific = false;

}
if (!isset (Sresult))
{
if ($Snonspecific) $result = array('Visitor' =>
Sthis->getTranslatedRole ('Visitor')) ;
else return array();

}

return Sresult;

private function &permissionHolders ($subject type, $subject id)

{

$sqgl = "SELECT DISTINCT role, action, control, subject type,
subject_id FROM #_permissions";
if ($subject type != '*') Swhere[] =
" (subject type='$subject type' OR subject type='*')";

[129]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

if ($subject id != '*') Swhere[] = "(subject id='$subject id' OR
subject_id='*")";
if (isset(Swhere)) $sgl .= " WHERE ".implode(' AND ', S$Swhere);

return $this->database->doSQLget ($sql) ;

}

Any code that is providing an RBAC administration function for some part of the
CMS is likely to want to know what roles already have a particular permission so as
to show this to the administrator in preparation for any changes. The private method
permissionHolders uses the parameters to create a SQL statement that will obtain
the minimum relevant permission entries. This is complicated by the fact that in most
contexts, asterisk can be used as a wild card.

The public method permittedRoles uses the private method to obtain relevant
database rows from the permissions table. These are checked against the action
parameter to see which of them are relevant. If there are no results, or if none of the
results refer specifically to the subject, without the use of wild cards, then it

is assumed that all visitors can access the subject, so the special role of visitor is
added to the results. When actual permission is to be granted we need the
following methods:

public function permit ($role, S$control, Saction, S$subject type,
$subject id)
{

$sqgl = S$this->permitSQL($role, S$control, sSaction, $subject type,
$subject _id) ;
Sthis->doSQL ($sqgl, true);

}

private function permitSQL ($role, $control, Saction, $subject type,
$subject id)
{

Sthis->database->setQuery ("SELECT id FROM #_permissions WHERE
role='$role' AND action='Saction' AND
subject type='S$subject type' AND
subject id='ssubject id'");
$id = sthis->database->loadResult () ;
if ($id) return "UPDATE # permissions SET control=$control
WHERE id=s$id";
else return "INSERT INTO # permissions (role, control, action,

subject type, subject id) VALUES ('$role', '$control',
'Saction', 'Ssubject type', 'S$subject _id')";
}
[130]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

The public method permit grants permission to a role. The control bits are set in the
parameter $control. The action is part of permission, and the subject of the action is
identified by the subject type and identity parameters. Most of the work is done by
the private method that generates the SQL; it is kept separate so that it can be used
by other methods. Once the SQL is obtained, it can be passed to the database, and
since it will normally result in changes, the option to clear the cache is set.

The SQL generated depends on whether there is already a permission with the same
parameters, in which case only the control bits are updated. Otherwise an insertion
occurs. The reason for having to do a SELECT first, and then decide on INSERT or
UPDATE is that the index on the relevant fields is not guaranteed to be unique, and
also because the subject ID is allowed to be much longer than can be included within
an index. It is therefore not possible to use ON DUPLICATE KEY UPDATE.

Wherever possible, it aids efficiency to use the MySQL option for ON
DUPLICATE KEY UPDATE. This is added to the end of an INSERT
statement, and if the INSERT fails by virtue of the key already existing

¥ in the table, then the alternative actions that follow ON DUPLICATE

Q KEY UPDATE are carried out. They consist of one or more assignments,
separated by commas, just as in an UPDATE statement. No WHERE is
permitted since the condition for the assignments is already determined
by the duplicate key situation.

A simple method allows deletion of all permissions for a particular action
and subject:

public function dropPermissions ($action, $subject type, $subject id)

{
$sqgl = "DELETE FROM # permissions WHERE action='$action' AND
subject type='$subject type'AND subject id='$subject id'
AND system=0";
Sthis->doSQL ($sqgl, true);

}

The final set of methods relates to assigning accessors to roles. Two of them

reflect the obvious need to be able to remove all roles from an accessor (possibly
preparatory to assigning new roles) and the granting of a role to an accessor. Where
the need is to assign a whole set of roles, it is better to have a method especially

for the purpose. Partly this is convenient, but it also provides an extra operation,
minimization of the set of roles. The method is:

public function assign ($role, S$Saccess type, Saccess _id, S$clear=true)

{

if (sthis->handler-s>barredRole($role)) return false;
$this->database->setQuery ("SELECT id FROM # assignments WHERE

[131]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

role='$role' AND access type='S$Saccess type' AND
access_1id='$access id'");

if ($this->database->loadResult()) return true;
$sqgl = "INSERT INTO #_assignments (role, access_type, access_id)
VALUES ('$role', 'Saccess type', 'Saccess id')";

Sthis->doSQL ($sgl, Sclear);
return true;
}
public function assignRoleSet ($roleset, S$Saccess type, S$access id)
{
$this->dropAccess (Saccess type, Saccess id);
Sroleset = Sthis->authoriser->minimizeRoleSet (Sroleset) ;

foreach ($roleset as $role) S$this->assign (Srole, Saccess type,
Saccess _1id, false);
$this->clearCache () ;
}

public function dropAccess ($access type, $Saccess_id)

{
$sql = "DELETE FROM #__assignments WHERE
access_type='S$access type' AND access_id='Saccess_id'";
Sthis->doSQL ($sgl, true);

}

The method assign links a role to an accessor. It checks for barred roles first, these
are simply the special roles discussed earlier, which cannot be allocated to any
accessor. As with the permitSQL method, it is not possible to use ON DUPLICATE
KEY UPDATE because the full length of the accessor ID is not part of an index, so
again the existence of an assignment is checked first. If the role assignment is already
in the database, there is nothing to do. Otherwise a row is inserted, and the cache

is cleared.

Getting rid of all role assignments for an accessor is a simple database deletion, and
is implemented in the dropAccess method. The higher level method assignroleset
uses dropAccess to clear out any existing assignments. The call to the authorizer
object to minimize the role set reflects the implementation of a hierarchical model.
Once there is a hierarchy, it is possible for one role to imply another as consultant
implied doctor in our earlier example. This means that a role set may contain
redundancy. For example, someone who has been allocated the role of consultant
does not need to be allocated the role of doctor. The minimizeRoleSet method
weeds out any roles that are superfluous. Once that has been done, each role is
dealt with using the assign method, with the clearing of the cache saved until the
very end.

[132]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

The General RBAC Cache

As outlined earlier, the information needed to deal with RBAC questions is cached
in two ways. The file system cache is handled by the aliroAuthoriserCache
singleton class, which inherits from the cachedsingleton class and is described
fully in Chapter 8, on caches. This means that the data of the singleton object will be
automatically stored in the file system whenever possible, with the usual provisions

for timing out an old cache, or clearing the cache when an update has occurred. It
is highly desirable to cache the data both to avoid database operations and to avoid
repeating the processing needed in the constructor. So the intention is that the
constructor method will run only infrequently. It contains this code:

protected function _ construct ()

{

// Making private enforces singleton
Sdatabase = aliroCoreDatabase::getInstance() ;
$database->setQuery ("SELECT role, implied FROM #_ role link UNION
SELECT DISTINCT role, role AS implied FROM
assignments UNION SELECT DISTINCT role,
role AS implied FROM # permissions") ;
$links = $database->loadObjectList () ;
if ($links) foreach ($links as $1link)
{
$this->all roles[$link->role] = $link->role;
$this->linked roles[$link->role] [$link->implied] = 1;
foreach ($this->linked roles as $role=>$impliedarray)

{

foreach ($impliedarray as Simplied=>$marker)

{

if ($implied == $link->role OR Simplied == s$link->implied)
{
$this->linked roles[Srole] [$link->implied] = 1;
if (isset($this->linked roles[$link->implied])) foreach

(sthis->linked roles[$link->implied] as $more=>$marker)

{

$this->linked roles[$role] [$Smore] = 1;

$database->setQuery ("SELECT role, access _id FROM #_ assignments
WHERE access type = 'aUser' AND (access _id = '*!
OR access _id = '0')");

[133]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

Suser roles = $database->loadObjectList() ;
if (Suser roles) foreach ($Suser roles as $role) S$this-
>user roles[$role->access_id] [$role->role]l = 1;
if (!isset(sthis->user_roles['0'])) S$this->user roles['0']
= array () ;
if (isset($this->user roles['*'])) S$this->user roles['0'] =
array merge ($this->user roles['0'], S$this->user roles['*']);

}

All possible roles are derived by a UNION of selections from the permissions,
assignments, and linked roles database tables. The union operation has overheads,
so that alone is one reason for favoring the use of a cache. The processing of linked
roles is also complex, and therefore worth running as infrequently as possible.
Rather than working through the code in detail, it is more useful to describe what
it is doing. The concept is much simpler than the detail! If we take an example from
the backwards compatibility features of Aliro, there is a role hierarchy that includes
the role Publisher, which implies membership of the role Editor. The role Editor
also implies membership of the role Author. In the general case, it is unreasonable
to expect the administrator to figure out the implied relationships. In this case, it is
clear that the role Publisher must also imply membership of the role Editor. But these
linked relationships can plainly become quite complex. The code in the constructor
therefore assumes that only the least number of connections have been entered into
the database, and it figures out all the implications.

The other operation where the code is less than transparent is the setting of the
user_roles property. The Aliro RBAC system permits the use of wild cards for
specification of identities within accessor, or subject types. An asterisk indicates any
identity. For accessors whose accessor type is user, another wild card available is
zero. This means any user who is logged in, and is not an unregistered visitor. Given
the relatively small number of role assignments of this kind, it saves a good deal of
processing if all of them are cached. Hence the user_roles processing is done in

the constructor.

Other methods in the cache class are simple enough to be mentioned rather than
given in detail. They include the actual implementation of the getTranslatedrole
method, which provides local translations for the special roles. Other actual
implementations are getAl1lRoles with the option to include the special roles,
getTranslatedRole, which translates a role if it turns out to be one of the special
ones and barredRole, which in turn, tests to see if the passed role is in the special
group. It may therefore not be assigned to an accessor.

[134]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

Asking RBAC Questions

Perhaps the most significant class is the one that actually answers questions about
permitted access. The aliroAuthoriser class is once again a singleton with the
usual mechanisms. For convenience, it has getAllRoles and getTranslatedRole
methods, but these are really implemented in the cache class described above.

The constructor does some relatively simple setting, including looking for cached
data in the PHP super-global $_SESSION:

private function _ construct ()
{
// Make sure session started
aliroSessionFactory: :getSession() ;
// Use session data as the source for cached user related data
foreach ($this->auth vars as S$Sone_ var)
{
if (!isset ($ SESSION['aliro auth'] [$one var]))
$ SESSION(['aliro auth'] [$Sone var] = array();

S$this->$one_var =& $_SESSION['aliro_auth'] [$one_var];
}
Sthis->handler = aliroAuthoriserCache: :getInstance() ;
$this->linked roles = $this->handler-s>getLinkedRoles() ;
Sthis->database = aliroCoreDatabase::getInstance() ;

}

Getting the current session, even though it is not used directly for anything, ensures
that a session has been started so that $_sEss1oN will contain data, if there is any.
Since Aliro always activates a session, and much RBAC data is specific to the current
user, it makes good sense to cache as session data. The handler and database
objects are found using the usual singleton access method, get Instance, and linked
roles are obtained from the authorizer cache.

Many RBAC questions involve roles, and the option of a hierarchy means that one
role can imply another. This relationship is stored in the 1inked_roles property.
Having roles implied means that a set of roles may include entries that are not really
needed. The minimizeRoleSet method eliminates them:

public function minimizeRoleSet ($Sroleset)

{

if (0 == count ($Sroleset)) return Sroleset;
$first = array shift($roleset);

[135]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

foreach ($Sroleset as Skey=>S$role)

{
if (isset($this->linked roles[$first] [$role])) unset
(Sroleset [Skey]) ;
if (isset($this->linked roles[$role] [$first])) return
Sthis->minimizeRoleSet (S$Sroleset) ;
}
array unshift (Sroleset, $first);
return Sroleset;

}

There are about a score of other methods, some public, and some private. In detail,
the key ones become quite complex. This is partly because of the nature of RBAC,
and partly to do with attempts at efficiency. Others are very simple, but this is
because they are interfaces to the more substantial methods, but with simplified
parameters, so as to provide a more usable interface. Because of the complexity, a
selection of the remaining classes is discussed in outline rather than being reviewed
in detail. The full code is downloadable from the Aliro website.

Permissions refer to actions on subjects, and it is very likely that multiple queries
will arise around similar subjects. The private method getSubjectData is used to
load permissions, based on a subject and an action, that is, a specific permission.
This method always ensures that all relevant rows from the permission table will

be loaded. The number of directly relevant rows will be the number of roles that
have the given permission. But the method also tries to get more data than is strictly
necessary. Depending on the number of records involved, the method may load all
permission data relating to the type of subject specified, not merely to the specific
subject. The precise number chosen is subject to optimization work. That is to say, all
records where the subject type matches, not just those that match both subject type,
and subject identifier. This is done because it is common for a question about rights
to a particular subject is often followed by a question about another subject of the
same kind. The permission data that is loaded is organized into array structures to
maximize the efficiency of lookups, and it is also cached as session data.

The method getAccessorRoles is used both internally and externally. Its
prototype is:

public function getAccessorRoles (Stype, $id)

It also returns an array of roles. The processing is complicated by the storage of data
in cache, something that is especially important for accessors since it is very likely
that a number of questions will be asked about the current user. The parameters are
the type of accessor (such as 'a User'), and the identifier (such as a user ID number).

[136]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

A private method, accessorPermissionOrControl, does the basic work of finding
out whether a particular accessor has rights to a given subject for a stated action. The
type of access is passed as a bit mask. This method is then used to create a series of
very simple public methods. The most frequently used has a prototype:

public function checkPermission ($a type, $a id, $action, $s_type='*"',
$s_id='*")

The result is zero or one to indicate false or true respectively. The accessor type

and ID together define the accessor. Action is self explanatory. Subject type and

ID together define the subject. There are situations where wild cards are used. For
example, when the action is to manage and the subjects are all users, then the subject
ID will be the asterisk wild card. Other actions may have no subject at all, in which
case both subject type and ID will be asterisks.

For ease of development, an alternative to checkPermission is the method
with prototype:

public function checkUserPermission ($action, $s_type='*', $s id='*"')

It assumes that the accessor is the current user, whose details can be obtained from
a standard class in the CMS, so only the action and the subject need be specified.
Similar methods to the last two also exist to handle the granting of rights.

While the link between accessors, and subjects via roles can often be kept under the
covers and handled within the authorizer class, in some cases it is needed explicitly.
It is therefore possible to ask whether a particular role can access a subject for a
particular action:

public function checkRolePermission ($role, S$action, $s_type, $s_id)

When it comes to deciding questions of access to objects that are generally managed
by another piece of software, the most effective query is to find out which items are
not available. Let's return to our example of a file repository, where roles are given
access to download from specific folders. A folder is identified by its subject type,
say remosFolder and an identifier, which in this case, is an ID number. Because
we have a rule saying that anything that does not have any specific permissions

set is available to all, it is possible to identify a list of all the folders where there are
permissions of some kind. For some of those, the user for whom we are asking may
have been granted access, via their roles. So those folders are removed from the list.
If any folders are left, they are the ones where access is not allowed. The method
used to support these queries is:

public function getRefusedList ($a type, $a id, s_type, SSactionlist)

[137]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

It returns an array of ID numbers, given an accessor defined by type, and ID along
with a subject type, and an action list. The action list may be a single action, but for
convenience, it is allowed to be a comma separated list of actions. The result is the ID
numbers for all folders where the accessor is denied permission to carry out any of
the actions.

Again to provide a more useful interface, an extended version of the method
is available:

public function getRefusedListSQL ($a_ type, $a id, $s_type,
Sactionlist, S$keyname)

It returns a fragment of SQL. Taking an example, if we call getRefusedListSQL (
'aUser', 47, 'remosFolder', 'download', 'id') we might get back a string
containing CAST (id AS CHAR) NOT IN ('5', '14', '27').This can be used as
part of a SQL statement to select folders where the user with ID 47 is allowed to
download. So, supposing we want to get a list of the repository container names that
are available to our sample user, the full SQL will be constructed using SELECT name
FROM #__downloads_containers WHERE followed by the partial SQL provided

by getRefusedListSQL. The final sample SQL is then SELECT name FROM #__
downloads containers WHERE CAST(id AS CHAR) NOT IN ('5', '14', '27'").

Summary

We've now got at least the outline of a highly flexible role-based access control
system. The principles are established, using standard notions of RBAC. Specific
details, such as the way accessors and subjects are identified are adapted to the
particular situation of a CMS framework.

The implementation in the database has been established in detail. We've studied
the code for administering RBAC, and considered in outline how questions about
access can be answered. Further details are available by downloading the

Aliro implementation.

[138]

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

Where to buy this book

You can buy PHP5 CMS Framework Development from the Packt Publishing website:
http://www.packtpub.com/PHP-5-CMS-Framework—-Development /book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

PUBLISHING

www.PacktPub.com

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book
http://www.packtpub.com/PHP-5-CMS-Framework-Development/book
http://www.packtpub.com/Shippingpolicy

