

PHP5 CMS Framework Development

Martin Brampton

Chapter No. 6

"Access Control"

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

 In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.6 "Access Control"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Martin Brampton, an internationally known IT Industry Analyst, has an unrivalled

grasp of the complexities of modern day system architectures built on both research and

practical experiences. Martin's knowledge of the importance of scalable frameworks is

founded on the early days of his career. After studying mathematics at Cambridge

University, he built major software systems in both financial and technical application

areas. Several of his systems were acclaimed as "legendary" in their reliability—some of

which are still in use today.

After a decade of heading IT for an accountancy firm, a few years as a director of a

leading analyst firm, and an MA degree in Modern European Philosophy, Martin finally

returned to his interest in software, but this time transformed into web applications. He

found PHP5, which fits well with his prejudice in favor of programming languages that

are interpreted and strongly object oriented.

Utilizing PHP, Martin took on development of useful extensions for the Mambo (and

now also Joomla!) systems, then became a team leader for developing Mambo itself.

More recently, he has written a complete new generation CMS named Aliro, many

aspects of which are described in this book. He has also created a common API to enable

extensions to be written with a single code base for Aliro, Joomla (1.0 and 1.5) and

Mambo (http://www.acmsapi.org).

All in all, Martin is now interested in too many things and consequently has little spare

time. But his focus is on object oriented software with a web slant, much of which is

open-source. He runs Black Sheep Research, which provides software, speaking and

writing services, including "The Brampton Factor", a monthly column for silicon

com (http://silicon.com/comment/martinbrampton) where he is politely described as a

veteran analyst.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

PHP5 CMS Framework Development
This book guides you through the design and implementation decisions necessary to

create a working architecture for a PHP5-based content management system. Each of the

major areas and decision points are reviewed and discussed. Code examples, which take

advantage of PHP5's object oriented nature, are provided and explained. They serve as a

means of illustrating the detailed development issues created by a CMS. In areas where

the code is too voluminous to be reproduced in detail, the design principles are explained

along with some critical pieces of code. A basic knowledge of PHP is assumed.

All of the code samples are taken from a frozen version of the Aliro development

project, and you can visit a site running on that version at http://packt.aliro.org. Apart

from being a demonstration of the code in action, the site provides access to the whole

of the code both through a class browser, built using Doxygen and a code repository,

powered by Subversion.

What This Book Covers
Chapter 1: This chapter introduces the reasons why CMS frameworks have become such

a widely used platform for websites and defines the critical features. The technical

environment is considered, in particular the benefits of using PHP5 for a CMS. Some

general questions about MVC, XHTML generation, and security are reviewed.

Chapter 2: This chapter takes us from a general overview of the CMS framework into the

specifics of user management. Every CMS-based site needs to make distinctions between

different types of user, if only between administrators and visitors. Often the

requirements are much more complex. The framework can provide a sound platform on

which more elaborate mechanisms can be built

Chapter 3: This chapter explores class and code loading strategies to decrease bloat and

increase security. Focus is placed on extensible approaches that can support additions to

the system.

Chapter 4: This chapter addresses and dispels the mystique of session management. Very

often continuity is needed, whether it is to support user login, or to allow the operation of

something like a shopping cart. The standard way to handle this is with sessions, and we

look at ways to provide a robust and secure basis for session handling.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

 Chapter 5: This chapter provides a basis for effective data handling in the applications

that use our CMS framework. The heart of a CMS is its database, and although PHP can

connect to databases, we look at services that can be built to make access easier.

Likewise, a standard abstract class for data objects corresponding to database rows can

considerably aid the development of the rest of the CMS.

Chapter 6: This chapter shows an outline of a highly flexible role-based access control

system. The culmination of much research and experimentation into access control

mechanisms is the role-based access control system. We look at an implementation

specifically designed for the CMS environment.

Chapter 7: This chapter focusses on defining a uniform architecture to support

functionality that is actually visible to the user. One of the reasons for building a CMS is

to use the same code repeatedly. But it will often be desirable to add another application

to the framework, and for this we need to look at standardized mechanisms for installing

and managing extensions.

Chapter 8: This chapter helps us gain efficiency by building specialized handlers.

A powerful way to make a CMS more efficient is to use a cache. This can be done

in various ways, and we look at the most profitable and at efficient code for their

implementation.

Chapter 9: This chapter shows how the CMS framework can provide all the basic

mechanisms for menu handling. While the styling of the menu, or equivalent navigational

device, is outside the core of a CMS framework, we can look at standard mechanisms for

handling the raw data that drives menus. If this is done well, building attractive displays

will be much easier.

Chapter 10: In more and more cases, software needs to cater for use of different

languages and other local standards. The CMS is no exception, and here we explore a

powerful mechanism for language and locale hand

Chapter 11: How best to create the final XHTML is an area rife with controversy. In this

chapter, we will look at the strengths and weaknesses of approaches such as templating

and widgets, along with the code needed to create them.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 12: This chapter describes the basic principles of a generalized configuration

system. There are a number of small but important services that are well provided by

a CMS framework. We look at mail, file system management, XML handling, and

several others.

Chapter 13: This chapter reviews the handling of the inevitable errors that go with

software systems. Error handling is an area where a good CMS framework can be very

helpful to applications by trapping and logging errors, making it relatively easy to

present user friendly messages and avoid giving away information that would

compromise security.

Chapter 14: The actual content that is organized by a CMS may be extremely varied. In

this chapter, we look at the most popular areas with a brief review of the implementation

issues for each. Less significant areas are discussed in outline. A simple text handling

application is described in some detail to illustrate the principles involved, and ways in

which it could be made more sophisticated are discussed.

Appendix A: This appendix describes how to create the setup files that are used by

the install

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control
Now we have some ideas about database, we quickly run into another requirement.
Many websites will want to control who has access to what. Once embarked on this
route, it turns out there are many situations where access control is appropriate,
and they can easily become very complex. So in this chapter we look at the most
highly regarded model–role-based access control–and fi nd ways to implement it.
The aim is to achieve a fl exible and effi cient implementation that can be exploited by
increasingly sophisticated software. To show what is going on, the example of a fi le
repository extension is used.

The Problem
 We need to design and implement a role-based access control (RBAC) system,
demonstrate its use, and ensure that the system can provide:

a simple data structure
a fl exible code to provide a usable RBAC interface
effi ciency so that RBAC avoids heavy overheads

Discussion and Considerations
 Computer systems have long needed controls on access. Early software commonly
fell into the category that became known as access control lists (ACL). But these
were typically applied at a fairly low level in systems, and referred to basic computer
operations. Further development brought software designed to tackle more
general issues, such as control of confi dential documents. Much work was done on
 discretionary access control (DAC), and mandatory access control (MAC).

•

•

•

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[120]

A good deal of academic research has been devoted to the whole question of access
controls. The culmination of this work is that the model most widely favored is the
role-based access control system, such a mouthful that the acronym RBAC is used
hereafter. Now although the academic analysis can be abstruse, we need a practical
solution to the problem of managing access to services on a website. Fortunately,
rather like the relational database discussed in the last chapter, the concepts of RBAC
are simple enough.

RBAC involves some basic entities. Unfortunately, terminologies are not always
consistent, so let us keep close to the mainstream, and defi ne some that will be used
to implement our solution:

Subject: A subject is something that is controlled. It could be a whole web
page, but might well be something much more specifi c such as a folder in a
fi le repository system. This example points to the fact that a subject can often
be split into two elements, a type, and an identifi er. So the folders of a fi le
repository count as a type of subject, and each individual folder has some
kind of identifi er.
Action: An action arises because we typically need to do more than simply
allow or deny access to RBAC subjects. In our example, we may place
different restrictions on uploading fi les to a folder and downloading
fi les from the folder. So our actions might therefore include 'upload', and
'download'.
Accessor: The simplest example of an accessor is a user. The accessor
is someone or something who wants to perform an action. It is unduly
restrictive to assume that accessors are always users. We might want to
consider other computer systems as accessors, or an accessor might be a
particular piece of software. Accessors are like subjects in splitting into two
parts. The fi rst part is the kind of accessor, with website users being the most
common kind. The second part is an identifi er for the specifi c accessor, which
might be a user identifying number.
Permission: The combination of a subject and an action is a permission. So,
for example, being able to download fi les from a particular folder in a fi le
repository would be a permission.
Assignment: In RBAC there is never a direct link between an accessor and
permission to perform an action on a subject. Instead, accessors are allocated
one or more roles. The linking of an accessor and role is an assignment.
Role: A role is the bearer of permissions and is similar to the notion of a
group. It is roles that are granted one or more permissions.

•

•

•

•

•

•

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[121]

It is easy to see that we can control what can be done by allocating roles to users, and
then checking to see if any of a user's roles has a particular permission. Moreover,
we can generalize this beyond users to other types of accessor as the need arises. The
model built so far is known in the academic literature as RBAC0.

Adding Hierarchy
 As RBAC can operate at a much more general level than ACL, it will often happen
that one role embraces another. Suppose we think of the example of a hospital, the
role of consultant might include the role of doctor. Not everyone who has the role of
doctor would have the role of consultant. But all consultants are doctors.

At present, Aliro implements hierarchy purely for backwards compatibility with
the Mambo, and Joomla! schemes, where there is a strict hierarchy of roles for
ACL. The ability to extend hierarchy more generally is feasible, given the Aliro
implementation, and may be added at some point.

The model with the addition of role hierarchies is known as RBAC1.

Adding Constraints
 In general data processing, situations arise where RBAC is expected to implement
constraints on the allocation of roles. A typical example would be that the same
person is not permitted to have both purchasing and account manager roles.
Restrictions of this kind derive from fairly obvious principles to limit scope for fraud.

While constraints can be powerful additions to RBAC, they do not often arise in web
applications, so Aliro does not presently provide any capability for constraints. The
option is not precluded, since constraints are typically grafted on top of an RBAC
system that does not have them.

 Adding constraints to the basic RBAC0 model creates an RBAC2 model, and if both
hierarchy and constraints are provided, the model is called RBAC3.

Avoiding Unnecessary Restrictions
 When it comes to design an implementation, it would be a pity to create obstacles
that will be troublesome later. To achieve maximum fl exibility, few restrictions are
placed on the information that is stored by the RBAC system.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[122]

Subjects and accessors have both types, and identifi ers. The types can be strings, and
there is no need for the RBAC system to limit what can be used in this respect. A
moderate limitation on length is not unduly restrictive. It is up to the wider CMS to
decide, for example, what kinds of subjects are needed. Our example for this chapter

is the fi le repository, and the subjects it needs are known to the designer of the
repository. All requests to the RBAC system from the fi le repository will take account
of this knowledge.

 Identifi ers will often be simple numbers, probably derived from an auto-increment
primary key in the database. But it would be unduly restrictive to insist that
identifi ers must be numbers. It may be that control is needed over subjects that
cannot be identifi ed by a number. Maybe the subject can only be identifi ed by a non-
numeric key such as a URI, or maybe it needs more than one fi eld to pick it out.

For these reasons, it is better to implement the RBAC system with the identifi ers as
strings, possibly with quite generous length constraints. That way, the designers
of software that makes use of the RBAC system have the maximum opportunity to
construct identifi ers that work in a particular context. Any number of schemes can
be imagined that will combine multiple fi elds into a string; after all, the only thing
we will do with the identifi er in the RBAC system is to test for equality. Provided
identifi ers are unique, their precise structure does not matter. The only point to
watch is making sure that whatever the original identifi er may be, it is consistently
converted into a string.

Actions can be simple strings, since they are merely arbitrary labels. Again, their
meaning is important only within the area that is applying RBAC, so the actual
RBAC system does not need to impose any restrictions. Length need not be
especially large.

Roles are similar, although systems sometimes include a table of roles because extra
information is held, such as a description of the role. But since this is not really a
requirement of RBAC, the system built here will not demand descriptions for roles,
and will permit a role to be any arbitrary string. While descriptions can be useful, it
is easy to provide them as an optional extra. Avoiding making them a requirement
keeps the system as fl exible as possible, and makes it much easier to create roles on
the fl y, something that will often be needed.

Some Special Roles
 Handling access controls can be made easier and more effi cient by inventing some
roles that have their own special properties. Aliro uses three of these: visitor,
registered, and nobody.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[123]

Everyone who comes to the site is counted as a visitor, and is therefore implicitly
given the role visitor. If a right is granted to this role, it is assumed that it is granted
to everybody. After all, it is illogical to give a right to a visitor, and deny it to a user
who has logged in, since the user could gain the access right just by logging out.

For the sake of effi cient implementation of the visitor role, two things are done. One
is that nothing is stored to associate particular users with the role, since everyone
has it automatically. Second, since most sites offer quite a lot of access to visitors
prior to login, the visitor role is given access to anything that has not been connected
with some more specifi c role. This means, again, that nothing needs to be stored in
relation to the visitor role.

Almost as extensive is the role registered, which is automatically applied to anyone
who has logged in, but excludes visitors who have not logged in. Again, nothing
is stored to associate users with the role, since it applies to anyone who identifi es
themselves as a registered user. But in this case, rights can be granted to the
registered role. Rather like the visitor role, logic dictates that if access is granted to all
registered users, any more specifi c rights are redundant, and can be ignored.

 Finally, the role of "nobody" is useful because of the principle that where no specifi c
access has been granted, a resource is available to everyone. Where all access is to
be blocked, then access can be granted to "nobody" and no user is permitted to be
"nobody". In fact, we can now see that no user can be allocated to any of the special
roles since they are always linked to them automatically or not at all.

Implementation Efficiency
 Clearly an RBAC system may have to handle a lot of data. More signifi cantly, it may
need to deal with a lot of requests in a short time. A page of output will often consist
of multiple elements, any or all of which may involve decisions on access.

A two pronged approach can be taken to this problem, using two different kinds
of cache. Some RBAC data is general in nature, an obvious example being the role
hierarchy. This applies equally to everyone, and is a relatively small amount of data.
Information of this kind can be cached in the fi le system so as to be available to
every request.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[124]

Much RBAC information is linked to the particular user. If all such data were to be
stored in the standard cache, it is likely that the cache would grow very large, with
much of the data irrelevant to any particular request. A better approach is to store
RBAC data that is specifi c to the user as session data. That way, it will be available
for every request by the same user, but will not be cluttered up with data for other
users. Since Aliro ensures that there is a live session for every user, including visitors
who have not yet logged in, and also preserves the session data at login, this is a
feasible approach.

Where are the Real Difficulties?
 Maybe you think we already have enough problems to solve without looking for
others? The sad fact is that we have not yet even considered the most diffi cult one!
In my experience, the real diffi culties arise in trying to design a user interface to deal
with actual control requirements.

The example used in this chapter is relatively simple. Controlling what users can do
in a fi le repository extension does not immediately introduce much complexity. But
this apparently simple situation is easily made more complex by the kind of requests
that are often made for a more advanced repository.

In the simple case, all we have to worry about is that we have control over areas of
the repository, indicating who can upload, who can download, and who can edit the
fi les. Those are the requirements that are covered by the examples below.

 Going beyond that, though, consider a situation that is often discussed as a possible
requirement. The repository is extended so that some users have their own area,
and can do what they like within it. A simple consequence of this is that we need
to be able to grant those users the ability to create new folders in the fi le repository,
as well as to upload and edit fi les in the existing folders. So far so good! But this
scenario also introduces the idea that we may want the user who owns an area of
the repository to be able to have control over certain areas, which other users may
have access to. Now we need the additional ability to control which users have the
right to give access to certain parts of the repository. If we want to go even further,
we can raise the issue of whether a user in this position would be able to delegate the
granting of access in their area to other users, so as to achieve a complete hierarchy
of control.

Handling the technical requirements here is not too diffi cult. What is diffi cult
is designing user interfaces to deal with all the possibilities without creating an
explosion of complexity. For an individual case it is feasible to fi nd a solution. An
attempt to create a general solution would probably result in a problem that would
be extremely hard to solve.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[125]

Framework Solution
 The implementation of access control falls into three classes. One is the class that is
asked questions about who can do what. Closely associated with this is another class
that caches general information applicable to all users. It is made a separate class
to aid implementation of the split of cache between generalD and user specifi c. The
third class handles administration operations. Before looking at the classes, though,
let's fi gure out the database design.

Database for RBAC
 All that is required to implement basic RBAC is two tables. A third table is required
to extend to a hierarchical model. An optional extra table can be implemented to
hold role descriptions. Thinking back to the design considerations, the fi rst need
is for a way to record the operations that can be done on the subjects, that is the
permissions. They are the targets for our access control system. You'll recall that a
permission consists of an action and a subject, where a subject is defi ned by a type,
and an identifi er. For ease of handling, a simple auto-increment ID number is added.
But we also need a couple of other things.

To make our RBAC system general, it is important to be able to control not only the
actual permissions, but also who can grant those permissions, and whether they can
grant that right to others. So an extra control fi eld is added with one bit for each of
those three possibilities. It therefore becomes possible to grant the right to access
something with or without the ability to pass on that right.

 The other extra data item that is useful is a "system" fl ag. It is used to make some
permissions incapable of deletion. Although not being a logical requirement, this
is certainly a practical requirement. We want to give administrators a lot of power
over the confi guration of access rights, but at the same time, we want to avoid any
catastrophes. The sort of thing that would be highly undesirable would be for the top
level administrator to remove all of their own rights to the system. In practice, most
systems will have a critical central structure of rights, which should not be altered
even by the highest administrator.

So now the permissions table can be seen to be as shown in the following screenshot:

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[126]

Note that the character strings for role, action, and subject_type are given generous
lengths of 60, which should be more than adequate. The subject ID will often be quite
short, but to avoid constraining generality, it is made a text fi eld, so that the RBAC
system can still handle very complex identifi ers, if required. Of course, there will be
some performance penalties if this fi eld is very long, but it is better to have a design
trade-off than a limitation. If we restricted the subject ID to being a number, then
more complex identifi ers would be a special case. This would destroy the generality
of our scheme, and might ultimately reduce overall effi ciency. In addition to the
auto-increment primary key ID, two indices are created, as shown in the following
screenshot. They involve overhead during update operations but are likely to speed
access operations. Since far more accesses will typically be made than updates, this
makes sense. If for some reason an index does not give a benefi t, it is always possible
to drop it. Note that the index on the subject ID has to be constrained in length
to avoid breaking limits on key size. T he value chosen is a compromise between
effi ciency through short keys, and effi ciency through the use of fi ne grained keys. In
a heavily used system, it would be worth reviewing the chosen fi gure carefully, and
perhaps modifying it in the light of studies into actual data.

The other main database table is even simpler, and holds information about
assignment of accessors to roles. Again, an auto-increment ID is added for
convenience. Apart from the ID, the only fi elds required are the role, the accessor
type, and the accessor ID. This time a single index, additional to the primary key, is
suffi cient. The assignment table is shown in the following screenshot, and its index is
shown in the screenshot after that:

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[127]

Adding hierarchy to RBAC requires only a very simple table, where each row
contains two fi elds: a role, and an implied role. Both fi elds constitute the primary
key, neither fi eld on its own being necessarily unique. An index is not required
for effi ciency, since the volume of hierarchy information is assumed to be small,
and whenever it is needed, the whole table is read. But it is still a good principle to
have a primary key, and it also guarantees that there will not be redundant entries.
For the example given earlier, a typical entry might have consultant as the role,
and doctor as the implied role. At present, Aliro implements hierarchy only for
backwards compatibility, but it is a relatively easy development to make hierarchical
relationships generally available.

Opti onally, an extra table can be used to hold a description of the roles in use. This
has no functional purpose, and is simply an option to aid administrators of the
system. The table should have the role as its primary key. As it does not affect the
functionality of the RBAC at all, no further detail is given here.

With the database design settled, let's look at the classes. The simplest is the
administration class, so we'll start there.

Administering RBAC
 The administration of the system could be done by writing directly to the database,
since that is what most of the operations involve. There are strong reasons not to do
so. Although the operations are simple, it is vital that they be handled correctly. It is
generally a poor principle to allow access to the mechanisms of a system rather than
providing an interface through class methods. The latter approach ideally allows the
creation of a robust interface that changes relatively infrequently, while details of
implementation can be modifi ed without affecting the rest of the system.

 The administration class is kept separate from the classes handling questions about
access because for most CMS requests, administration will not be needed, and the
administration class will not load at all. As a central service, the class is implemented
as a standard singleton, but it is not cached because information generally needs to
be written immediately to the database. In fact, the administration class frequently
requests the authorization cache class to clear its cache so that the changes in the
database can be effective immediately. The class starts off:

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[128]

class aliroAuthorisationAdmin
 {
 private static $instance = __CLASS__;
 private $handler = null;
 private $authoriser = null;
 private $database = null;
 private function __construct()
 {
 $this->handler =& aliroAuthoriserCache::getInstance();
 $this->authoriser =& aliroAuthoriser::getInstance();
 $this->database = aliroCoreDatabase::getInstance();
 }
 private function __clone()
 {
 // Enforce singleton
 }
 public static function getInstance()
 {
 return is_object(self::$instance) ? self::$instance :
 (self::$instance = new self::$instance());
 }
 private function doSQL($sql, $clear=false)
 {
 $this->database->doSQL($sql);
 if ($clear) $this->clearCache();
 }
 private function clearCache()
 {
 $this->handler->clearCache();
 }

Apart from the instance property that is used to implement the singleton pattern,
the other private properties are related objects that are acquired in the constructor
to help other methods. Getting an instance operates in the usual fashion for a
singleton, with the private constructor, and clone methods enforcing access solely via
getInstance.

 The doSQL method also simplifi es other methods by combining a call to the database
with an optional clearing of cache through the class's clearCache method. Clearly
the latter is simple enough that it could be eliminated. But it is better to have the
method in place so that if changes were made to the implementation such that
different actions were needed when any relevant cache is to be cleared, the changes
would be isolated to the clearCache method. Next we have a couple of useful
methods that simply refer to one of the other RBAC classes:

public function getAllRoles($addSpecial=false)
 {
 return $this->authoriser->getAllRoles($addSpecial);

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[129]

 }

public function getTranslatedRole($role)
 {
 return $this->authoriser->getTranslatedRole($role);
 }

 Again, these are provided so as to simplify the future evolution of the code so that
implementation details are concentrated in easily identifi ed locations. The general
idea of getAllRoles is obvious from the name, and the parameter determines
whether the special roles such as visitor, registered, and nobody will be included.
Since those roles are built into the system in English, it would be useful to be able
to get local translations for them. So the method getTranslatedRole will return a
translation for any of the special roles; for other roles it will return the parameter
unchanged, since roles are created dynamically as text strings, and will therefore
normally be in a local language from the outset. Now we are ready to look at the fi rst
meaty method:

public function permittedRoles ($action, $subject_type, $subject_id)
 {
 $nonspecific = true;
 foreach ($this->permissionHolders ($subject_type, $subject_id)
 as $possible)
 {
 if ('*' == $possible->action OR $action == $possible->action)
 {
 $result[$possible->role] = $this->getTranslatedRole
 ($possible->role);
 if ('*' != $possible->subject_type AND '*' !=
 $possible_subject_id) $nonspecific = false;
 }
 }
 if (!isset($result))
 {
 if ($nonspecific) $result = array('Visitor' =>
 $this->getTranslatedRole('Visitor'));
 else return array();
 }
 return $result;
 }

private function &permissionHolders ($subject_type, $subject_id)
 {
 $sql = "SELECT DISTINCT role, action, control, subject_type,
 subject_id FROM #__permissions";
 if ($subject_type != '*') $where[] =
 "(subject_type='$subject_type' OR subject_type='*')";

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[130]

 if ($subject_id != '*') $where[] = "(subject_id='$subject_id' OR
 subject_id='*')";
 if (isset($where)) $sql .= " WHERE ".implode(' AND ', $where);
 return $this->database->doSQLget($sql);
 }

Any code that is providing an RBAC administration function for some part of the
CMS is likely to want to know what roles already have a particular permission so as
to show this to the administrator in preparation for any changes. The private method
 permissionHolders uses the parameters to create a SQL statement that will obtain
the minimum relevant permission entries. This is complicated by the fact that in most
contexts, asterisk can be used as a wild card.

 The public method permittedRoles uses the private method to obtain relevant
database rows from the permissions table. These are checked against the action
parameter to see which of them are relevant. If there are no results, or if none of the
results refer specifi cally to the subject, without the use of wild cards, then it
is assumed that all visitors can access the subject, so the special role of visitor is
added to the results. When actual permission is to be granted we need the
following methods:

public function permit ($role, $control, $action, $subject_type,
 $subject_id)
 {
 $sql = $this->permitSQL($role, $control, $action, $subject_type,
 $subject_id);
 $this->doSQL($sql, true);
 }

private function permitSQL ($role, $control, $action, $subject_type,
 $subject_id)
 {
 $this->database->setQuery("SELECT id FROM #__permissions WHERE
 role='$role' AND action='$action' AND
 subject_type='$subject_type' AND
 subject_id='$subject_id'");
 $id = $this->database->loadResult();
 if ($id) return "UPDATE #__permissions SET control=$control
 WHERE id=$id";
 else return "INSERT INTO #__permissions (role, control, action,
 subject_type, subject_id) VALUES ('$role', '$control',
 '$action', '$subject_type', '$subject_id')";
 }

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[131]

The public method permit grants permission to a role. The control bits are set in the
parameter $control. The action is part of permission, and the subject of the action is
identifi ed by the subject type and identity parameters. Most of the work is done by
the private method that generates the SQL; it is kept separate so that it can be used
by other methods. Once the SQL is obtained, it can be passed to the database, and
since it will normally result in changes, the option to clear the cache is set.

 The SQL generated depends on whether there is already a permission with the same
parameters, in which case only the control bits are updated. Otherwise an insertion
occurs. The reason for having to do a SELECT fi rst, and then decide on INSERT or
UPDATE is that the index on the relevant fi elds is not guaranteed to be unique, and
also because the subject ID is allowed to be much longer than can be included within
an index. It is therefore not possible to use ON DUPLICATE KEY UPDATE.

Wherever possible, it aids effi ciency to use the MySQL option for ON
DUPLICATE KEY UPDATE. This is added to the end of an INSERT
statement, and if the INSERT fails by virtue of the key already existing
in the table, then the alternative actions that follow ON DUPLICATE
KEY UPDATE are carried out. They consist of one or more assignments,
separated by commas, just as in an UPDATE statement. No WHERE is
permitted since the condition for the assignments is already determined
by the duplicate key situation.

A simple method allows deletion of all permissions for a particular action
and subject:

public function dropPermissions ($action, $subject_type, $subject_id)
 {
 $sql = "DELETE FROM #__permissions WHERE action='$action' AND
 subject_type='$subject_type'AND subject_id='$subject_id'
 AND system=0";
 $this->doSQL($sql, true);
 }

The fi nal set of methods relates to assigning accessors to roles. Two of them
refl ect the obvious need to be able to remove all roles from an accessor (possibly
preparatory to assigning new roles) and the granting of a role to an accessor. Where
the need is to assign a whole set of roles, it is better to have a method especially
for the purpose. Partly this is convenient, but it also provides an extra operation,
minimization of the set of roles. The method is:

public function assign ($role, $access_type, $access_id, $clear=true)
 {
 if ($this->handler->barredRole($role)) return false;
 $this->database->setQuery("SELECT id FROM #__assignments WHERE

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[132]

 role='$role' AND access_type='$access_type' AND
 access_id='$access_id'");
 if ($this->database->loadResult()) return true;
 $sql = "INSERT INTO #__assignments (role, access_type, access_id)
 VALUES ('$role', '$access_type', '$access_id')";
 $this->doSQL($sql, $clear);
 return true;
 }

public function assignRoleSet ($roleset, $access_type, $access_id)
 {
 $this->dropAccess ($access_type, $access_id);
 $roleset = $this->authoriser->minimizeRoleSet($roleset);
 foreach ($roleset as $role) $this->assign ($role, $access_type,
 $access_id, false);
 $this->clearCache();
 }

public function dropAccess ($access_type, $access_id)
 {
 $sql = "DELETE FROM #__assignments WHERE
 access_type='$access_type' AND access_id='$access_id'";
 $this->doSQL($sql, true);
 }

The method assign links a role to an accessor. It checks for barred roles fi rst, these
are simply the special roles discussed earlier, which cannot be allocated to any
accessor. As with the permitSQL method, it is not possible to use ON DUPLICATE
KEY UPDATE because the full length of the accessor ID is not part of an index, so
again the existence of an assignment is checked fi rst. If the role assignment is already
in the database, there is nothing to do. Otherwise a row is inserted, and the cache
is cleared.

 Getting rid of all role assignments for an accessor is a simple database deletion, and
is implemented in the dropAccess method. The higher level method assignRoleSet
uses dropAccess to clear out any existing assignments. The call to the authorizer
object to minimize the role set refl ects the implementation of a hierarchical model.
Once there is a hierarchy, it is possible for one role to imply another as consultant
implied doctor in our earlier example. This means that a role set may contain
redundancy. For example, someone who has been allocated the role of consultant
does not need to be allocated the role of doctor. The minimizeRoleSet method
weeds out any roles that are superfl uous. Once that has been done, each role is
dealt with using the assign method, with the clearing of the cache saved until the
very end.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[133]

The General RBAC Cache
 As outlined earlier, the information needed to deal with RBAC questions is cached
in two ways. The fi le system cache is handled by the aliroAuthoriserCache
singleton class, which inherits from the cachedSingleton class and is described
fully in Chapter 8, on caches. This means that the data of the singleton object will be
automatically stored in the fi le system whenever possible, with the usual provisions

for timing out an old cache, or clearing the cache when an update has occurred. It
is highly desirable to cache the data both to avoid database operations and to avoid
repeating the processing needed in the constructor. So the intention is that the
constructor method will run only infrequently. It contains this code:

protected function __construct()
 {
 // Making private enforces singleton
 $database = aliroCoreDatabase::getInstance();
 $database->setQuery("SELECT role, implied FROM #__role_link UNION
 SELECT DISTINCT role, role AS implied FROM
 #__assignments UNION SELECT DISTINCT role,
 role AS implied FROM #__permissions");
 $links = $database->loadObjectList();
 if ($links) foreach ($links as $link)
 {
 $this->all_roles[$link->role] = $link->role;
 $this->linked_roles[$link->role][$link->implied] = 1;
 foreach ($this->linked_roles as $role=>$impliedarray)
 {
 foreach ($impliedarray as $implied=>$marker)
 {
 if ($implied == $link->role OR $implied == $link->implied)
 {
 $this->linked_roles[$role][$link->implied] = 1;
 if (isset($this->linked_roles[$link->implied])) foreach
 ($this->linked_roles[$link->implied] as $more=>$marker)
 {
 $this->linked_roles[$role][$more] = 1;
 }
 }
 }
 }
 }
 $database->setQuery("SELECT role, access_id FROM #__assignments
 WHERE access_type = 'aUser' AND (access_id = '*'
 OR access_id = '0')");

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[134]

 $user_roles = $database->loadObjectList();
 if ($user_roles) foreach ($user_roles as $role) $this-
 >user_roles[$role->access_id][$role->role] = 1;
 if (!isset($this->user_roles['0'])) $this->user_roles['0']
 = array();
 if (isset($this->user_roles['*'])) $this->user_roles['0'] =
 array_merge($this->user_roles['0'], $this->user_roles['*']);
 }

 All possible roles are derived by a UNION of selections from the permissions,
assignments, and linked roles database tables. The union operation has overheads,
so that alone is one reason for favoring the use of a cache. The processing of linked
roles is also complex, and therefore worth running as infrequently as possible.
Rather than working through the code in detail, it is more useful to describe what
it is doing. The concept is much simpler than the detail! If we take an example from
the backwards compatibility features of Aliro, there is a role hierarchy that includes
the role Publisher, which implies membership of the role Editor. The role Editor
also implies membership of the role Author. In the general case, it is unreasonable
to expect the administrator to fi gure out the implied relationships. In this case, it is
clear that the role Publisher must also imply membership of the role Editor. But these
linked relationships can plainly become quite complex. The code in the constructor
therefore assumes that only the least number of connections have been entered into
the database, and it fi gures out all the implications.

The other operation where the code is less than transparent is the setting of the
user_roles property. The Aliro RBAC system permits the use of wild cards for
specifi cation of identities within accessor, or subject types. An asterisk indicates any
identity. For accessors whose accessor type is user, another wild card available is
zero. This means any user who is logged in, and is not an unregistered visitor. Given
the relatively small number of role assignments of this kind, it saves a good deal of
processing if all of them are cached. Hence the user_roles processing is done in
the constructor.

 Other methods in the cache class are simple enough to be mentioned rather than
given in detail. They include the actual implementation of the getTranslatedRole
method, which provides local translations for the special roles. Other actual
implementations are getAllRoles with the option to include the special roles,
getTranslatedRole, which translates a role if it turns out to be one of the special
ones and barredRole, which in turn, tests to see if the passed role is in the special
group. It may therefore not be assigned to an accessor.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[135]

Asking RBAC Questions
 Perhaps the most signifi cant class is the one that actually answers questions about
permitted access. The aliroAuthoriser class is once again a singleton with the
usual mechanisms. For convenience, it has getAllRoles and getTranslatedRole
methods, but these are really implemented in the cache class described above.

The constructor does some relatively simple setting, including looking for cached
data in the PHP super-global $_SESSION:

private function __construct()
 {
 // Make sure session started
 aliroSessionFactory::getSession();
 // Use session data as the source for cached user related data
 foreach ($this->auth_vars as $one_var)
 {
 if (!isset($_SESSION['aliro_auth'][$one_var]))
 $_SESSION['aliro_auth'][$one_var] = array();

 $this->$one_var =& $_SESSION['aliro_auth'][$one_var];
 }
 $this->handler = aliroAuthoriserCache::getInstance();
 $this->linked_roles = $this->handler->getLinkedRoles();
 $this->database = aliroCoreDatabase::getInstance();
 }

Getting the current session, even though it is not used directly for anything, ensures
that a session has been started so that $_SESSION will contain data, if there is any.
Since Aliro always activates a session, and much RBAC data is specifi c to the current
user, it makes good sense to cache as session data. The handler and database
objects are found using the usual singleton access method, getInstance, and linked
roles are obtained from the authorizer cache.

Many RBAC questions involve roles, and the option of a hierarchy means that one
role can imply another. This relationship is stored in the linked_roles property.
Having roles implied means that a set of roles may include entries that are not really
needed. The minimizeRoleSet method eliminates them:

public function minimizeRoleSet ($roleset)
 {
 if (0 == count($roleset)) return $roleset;
 $first = array_shift($roleset);

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[136]

 foreach ($roleset as $key=>$role)
 {
 if (isset($this->linked_roles[$first][$role])) unset
 ($roleset[$key]);
 if (isset($this->linked_roles[$role][$first])) return
 $this->minimizeRoleSet ($roleset);
 }
 array_unshift($roleset, $first);
 return $roleset;
 }

 There are about a score of other methods, some public, and some private. In detail,
the key ones become quite complex. This is partly because of the nature of RBAC,
and partly to do with attempts at effi ciency. Others are very simple, but this is
because they are interfaces to the more substantial methods, but with simplifi ed
parameters, so as to provide a more usable interface. Because of the complexity, a
selection of the remaining classes is discussed in outline rather than being reviewed
in detail. The full code is downloadable from the Aliro website.

Permissions refer to actions on subjects, and it is very likely that multiple queries
will arise around similar subjects. The private method getSubjectData is used to
load permissions, based on a subject and an action, that is, a specifi c permission.
This method always ensures that all relevant rows from the permission table will
be loaded. The number of directly relevant rows will be the number of roles that
have the given permission. But the method also tries to get more data than is strictly
necessary. Depending on the number of records involved, the method may load all
permission data relating to the type of subject specifi ed, not merely to the specifi c
subject. The precise number chosen is subject to optimization work. That is to say, all
records where the subject type matches, not just those that match both subject type,
and subject identifi er. This is done because it is common for a question about rights
to a particular subject is often followed by a question about another subject of the
same kind. The permission data that is loaded is organized into array structures to
maximize the effi ciency of lookups, and it is also cached as session data.

The method getAccessorRoles is used both internally and externally. Its
prototype is:

public function getAccessorRoles ($type, $id)

It also returns an array of roles. The processing is complicated by the storage of data
in cache, something that is especially important for accessors since it is very likely
that a number of questions will be asked about the current user. The parameters are
the type of accessor (such as 'a User'), and the identifi er (such as a user ID number).

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Chapter 6

[137]

A private method, accessorPermissionOrControl, does the basic work of fi nding
out whether a particular accessor has rights to a given subject for a stated action. The
type of access is passed as a bit mask. This method is then used to create a series of
very simple public methods. The most frequently used has a prototype:

public function checkPermission ($a_type, $a_id, $action, $s_type='*',
$s_id='*')

 The result is zero or one to indicate false or true respectively. The accessor type
and ID together defi ne the accessor. Action is self explanatory. Subject type and
ID together defi ne the subject. There are situations where wild cards are used. For
example, when the action is to manage and the subjects are all users, then the subject
ID will be the asterisk wild card. Other actions may have no subject at all, in which
case both subject type and ID will be asterisks.

For ease of development, an alternative to checkPermission is the method
with prototype:

public function checkUserPermission ($action, $s_type='*', $s_id='*')

It assumes that the accessor is the current user, whose details can be obtained from
a standard class in the CMS, so only the action and the subject need be specifi ed.
Similar methods to the last two also exist to handle the granting of rights.

While the link between accessors, and subjects via roles can often be kept under the
covers and handled within the authorizer class, in some cases it is needed explicitly.
It is therefore possible to ask whether a particular role can access a subject for a
particular action:

public function checkRolePermission ($role, $action, $s_type, $s_id)

When it comes to deciding questions of access to objects that are generally managed
by another piece of software, the most effective query is to fi nd out which items are
not available. Let's return to our example of a fi le repository, where roles are given
access to download from specifi c folders. A folder is identifi ed by its subject type,
say remosFolder and an identifi er, which in this case, is an ID number. Because
we have a rule saying that anything that does not have any specifi c permissions
set is available to all, it is possible to identify a list of all the folders where there are
permissions of some kind. For some of those, the user for whom we are asking may
have been granted access, via their roles. So those folders are removed from the list.
If any folders are left, they are the ones where access is not allowed. The method
used to support these queries is:

public function getRefusedList ($a_type, $a_id, $s_type, $actionlist)

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Access Control

[138]

It returns an array of ID numbers, given an accessor defi ned by type, and ID along
with a subject type, and an action list. The action list may be a single action, but for
convenience, it is allowed to be a comma separated list of actions. The result is the ID
numbers for all folders where the accessor is denied permission to carry out any of
the actions.

 Again to provide a more useful interface, an extended version of the method
is available:

public function getRefusedListSQL ($a_type, $a_id, $s_type,
$actionlist, $keyname)

It returns a fragment of SQL. Taking an example, if we call getRefusedListSQL(
'aUser', 47, 'remosFolder', 'download', 'id') we might get back a string
containing CAST(id AS CHAR) NOT IN ('5', '14', '27'). This can be used as
part of a SQL statement to select folders where the user with ID 47 is allowed to
download. So, supposing we want to get a list of the repository container names that
are available to our sample user, the full SQL will be constructed using SELECT name
FROM #__downloads_containers WHERE followed by the partial SQL provided
by getRefusedListSQL. The fi nal sample SQL is then SELECT name FROM #__
downloads_containers WHERE CAST(id AS CHAR) NOT IN ('5', '14', '27').

Summary
We've now got at least the outline of a highly fl exible role-based access control
system. The principles are established, using standard notions of RBAC. Specifi c
details, such as the way accessors and subjects are identifi ed are adapted to the
particular situation of a CMS framework.

The implementation in the database has been established in detail. We've studied
the code for administering RBAC, and considered in outline how questions about
access can be answered. Further details are available by downloading the
Aliro implementation.

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book

For More Information:
www.packtpub.com/PHP-5-CMS-Framework-Development/book

Where to buy this book
You can buy PHP5 CMS Framework Development from the Packt Publishing website:
http://www.packtpub.com/PHP-5-CMS-Framework-Development/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/PHP-5-CMS-Framework-Development/book
http://www.packtpub.com/PHP-5-CMS-Framework-Development/book
http://www.packtpub.com/Shippingpolicy

